
Nouhad J. Rizk Operating system 1/14

Workshop: Using the vi editor
References

• Learning the vi Editor, by Linda Lamb. O'Reilly and Associates, Inc.
• vi man page

Why learn vi?
• It's installed on nearly all UNIX systems
• It works in VTxx mode, in case you don't have X-Windows
• It's a screen editor, not a line editor, so it's better than editors such as ed or ex

Other editors

Editor ASCII or X Windows Full-screen or line editor Lexical parsing?
emacs either full-screen yes
lpex X Windows only full-screen yes
dtpad X Windows only full-screen no
vi ASCII only full-screen no
ined ASCII only full-screen no
ed ASCII only line editor no
ex ASCII only line editor no

Notes:

• ASCII refers to text only.
• X Windows refers to a graphical mode, reminiscent of MS Windows.
• ASCII editors such as vi can still be used under X Windows by opening a psuedo-

terminal such as xterm or aixterm; however they do not directly support the
graphical features of X Windows.

• Lexical parsing refers to the ability of some editors to recognize and highlight
keywords in computer languages such as Fortran or C.

Overview of vi
vi modes

• Two modes: Command mode, and input mode
• Command mode is the default

Nouhad J. Rizk Operating system 2/14

• In command mode, anything typed is interpreted as commands
• To go to input mode, hit the letter i
• Once in input mode, everything you type is interpreted as text
• To return to command mode, hit the ESC key

vi commands
• Case sensitive
• Usually one or two characters
• vi commands generally don't require hitting the ENTER or RETURN key
• ex commands begin with colon (:) and require hitting the ENTER or RETURN

key. ex is a line editor which underlies vi; vi is visual mode for ex.

Getting in and out of vi
• To edit a file, enter the vi command from the UNIX command prompt:
• vi filename

• Once in vi, you are automatically placed in command mode
• To go to input mode, hit letter i
• Begin typing text
• Return to command mode by hitting the ESC key
• To save the file, enter :w
• To quit the file, enter :q
• To save and quit, enter :wq
• To quit without saving, enter :q!

Moving around
Moving one character at a time

Function Key sequence
Move up one line Letter k, or up arrow key
Move down one line Letter j or down arrow key
Move left one character at a time letter h or left arrow key
Move right one character at a time letter l or left arrow key

Scrolling

Nouhad J. Rizk Operating system 3/14

Function Key sequence
Scroll up one line letter l or up arrow key
Scroll down one line letter j or down arrow key
Scroll forward one screen ctrl-f
Scroll backward one screen ctrl-b
Scroll down half screen ctrl-d
Scroll up half screen ctrl-u

Global movements

Function Key sequence
Go to a line, by line number nG or :n (where n is a line number)
Go to the bottom of a file G
Go to top of file 1G or :1
Display line numbers :set nu
Suppress line numbers :set nonu

Moving within a line

Function Key sequence
Move right one character letter l, or right arrow key
Move left one character letter h, or left arrow key
Move to the beginning of a line 0 (zero)
Move to the end of a line $ (dollar sign)

Moving by words

Function Key sequence
Move to the next word (treating punctuation as separate words) letter w (lower case)

Move to the next word (treating punctuation as part of the word) letter W (upper
case)

Move to the previous word (treating punctuation as separate words) letter b (lower case)
Move to the previous word (treating punctuation as part of the
word) letter B (upper case)

Nouhad J. Rizk Operating system 4/14

Moving by paragraph

Move to the next paragraph } (right curly bracket)
Move to the previous paragraph { (left curly bracket)

Locating text

Function Key sequence
Find a string Slash key (/) followed by string
Find next occurrence Letter n
Search backward for a string Question mark (?) followed by string
Search backward for previous string Question mark (?) and enter key

Editing commands
Function Key sequence
Insert letter i

Append letter a
Delete letter d (upper-case D will delete to the end of a line)
Move delete (letter d) followed by put (letter p)
Copy yank (letter y) followed by put (letter p)

Adding text

Function Key sequence
Go into input mode letter i
Go into append mode letter a
Add a line and go into input mode letter o
Return to command mode ESC key

Deleting text
Note: You must be in command mode to use the following commands.
Function Key sequence

Nouhad J. Rizk Operating system 5/14

Delete a line dd
Delete n lines ndd (where n is the number of lines to delete, e.g. 2dd)
Delete a single character letter x
Delete to the end of a line letter D (upper case)
Delete a word dw
Delete up to some string d/string/

Copying text

Function Key sequence
Get text into buffer (yank) letter y
Put text from buffer onto screen (put) letter p
Get a line into buffer yy

Get n lines into buffer nyy (where n is a number,
e.g. 3yy)

Get all text from current cursor location, up to but not
including some string y/string

Get all text from cursor to bottom of file
yG

Moving text
Moving text is done by first deleting it (d), then putting it (p). Please refer to the section
above on deleting text.

Joining and splitting lines

Function Key sequence
Join the next line to the current line letter J (upper case)
Join the next n lines nJ (where n is the number of lines)
Split a line Hit letter i at location to split, then hit the enter key

More ways to add and replace text
Note: All the following commands (except r) leave you in input mode. Remember to hit
the ESC key if you want to return to command mode.
Insert text at current cursor location letter i

Nouhad J. Rizk Operating system 6/14

Insert text at beginning of line letter I (upper case)
Append text after current cursor location letter a
Append to end of current line letter A (upper case)
Open new line below cursor letter o
Open new line above cursor letter O (upper case)
Substitute a single character at cursor letter s
Substitute entire line at cursor letter S (upper case)
Replace a single character (but don't go into input mode) letter r
Replace current text letter R (upper case)

Global replacements

Function Key sequence
Substitute first occurrence of
a string on the current line :s/old/new/

Substitute all occurrence of a
string on the current line :s/old/new/g

Substitute all occurrence of a
string within a range of lines

:nn,mms/old/new/g (where nn,mm is a range of line
numbers separated by comma)

Substitute all occurrence of a
string within a file

:1,$s/old/new/g (where 1,$ indicates the range of line
numbers from line 1 to the end of file)

Same as previous (replace all
occurrences in a file) :%s/old/new/g (where % is an abbreviation for 1,$)

Global replacement, confirm
substitutions

:%s/old/new/gc (You will be prompted as to whether to
perform each substitution. Enter y to confirm, or just hit
enter to bypass)

Repeating and undoing edits

Function Key sequence
Repeat period (.)
Undo last change letter u
Undo all changes on current line letter U (upper case)

Edits across files

Nouhad J. Rizk Operating system 7/14

Reading and saving into other files

Function Key sequence
Read another file into current file at
cursor location :r filename

Read another file into current file, place it
after some line number

:nnr filename (where nn is a line number; $ is
end of file)

Write text from current file to a new file :w newfile
Overwrite an existing file with the
contents of the current file :w! some.file

Use % (current filename) to create a new
file :w %.new

Append text from current file to another
existent file :w >> newfile

Write a range of lines from current file to
another file

:nn,mmw newfile (where nn,mm is a range of
lines; $ means end of file)

Editing multiple files
To edit another file while editing a file, use :e
:e filename

Then use :e # to switch to the alternate file:
:e #

You can also specify two filename on the vi command:
vi file1 file2

Initially you are placed in an edit session for the first file. To edit the second file in the
sequence, use:
:n

To go back to the alternate (first) file, use:
:e #

Using named buffers
• vi provides up to 26 named buffers (a-z)
• You can store text from an edit command into a named buffer to be retrieved

later. Precede an edit command with double quote and a buffer name.
• Example: Yank a line into a named buffer, buffer b:
• "byy

Nouhad J. Rizk Operating system 8/14

• Once the buffer has data stored into it, it can be retrieved using the put (p)
command. Example:

• "bp

• Copying is done by a sequence of yank and put; move is done by a sequence of
delete and put.

• Delete a line and store it into buffer b:
• "bdd

You can then move your cursor, and use "bp to move the text to the new location.

• Named buffers are stored across edit sessions. You can use the :e command to
edit a second file while still inside the first. The use p to retrieve named buffers.

• % and # refer to the current and alternate filenames. To switch from to the other
file, enter:

• :e #

Tailoring vi
Set commands

Function Key
sequence Abbreviation Turn off

Ignore case during a search :set
ignorecase :set ic :set noic

Display line numbers :set number :set nu :set nonumber
Report changes larger than n lines
(default is 5) :set report=n none none

Show current mode (input, replace
modes)

:set
showmode none :set

noshowmode
Searches will wrap around the end of file :set wrapscan :set ws :set nows
Note: In general, you can always turn off an option by preceding it with no.

Creating a vi profile
• vi reads .exrc from your home directory as it's profile
• set commands in the .exrc file should not include the colon

Nouhad J. Rizk Operating system 9/14

Summary of most useful commands
Function Key sequence

Save current file :w
Save and quit :wq
Quit without saving latest changes :q!
Go into input mode i
Return to command mode ESC key
Add a line and go into input mode o
Go into replace mode R
Replace a single character r
Delete a single character x
Delete a line dd
Delete n lines ndd (e.g. 3dd, 5dd)
Delete to end of current line D
Delete to end of file dG
Go to top of file :1
Go to botton of file G
Scroll forward one screen ctrl-f
Scroll backward one screen ctrl-b
Copy a line yy followed by p
Copy n lines nyy followed by p
Copy up to but not including some string y/string followed by p
Global change :%s/oldstring/newstring/g
Show modes :set showmode
Show line numbers :set number (turn off with :set nonu)

Exercises
Please note: Within vi, ex commands, or commands starting with a colon (:) require that
you hit the return key to enter them. Other commands not starting with colon (:) don't
require the return key.

Basic editing
1. Edit the file from the previous workshop:

Nouhad J. Rizk Operating system 10/14

2. vi test.file

3. Go to the bottom of the file:
4. G

5. Pull the last line into an unnamed buffer:
6. yy

7. Place the buffer contents after the current line (the last line):
8. p

9. Go to line 10:
10. :10

11. Pull 3 lines into the buffer:
12. 3yy

13. Now move to the second line:
14. :2

15. Place the contents of the buffer after the second line:
16. p

17. Delete lines 15-20. First, go to line 15.
18. :15

19. Now delete 6 lines:
20. 6dd

Nouhad J. Rizk Operating system 11/14

21. Moving text is done by combininig deletion with placement. Move lines 25-26 to
the bottom of the file as follows.

22. :25
23. 2dd
24. G
25. p

26. Join the top two lines as follows:
27. :1
28. J

29. Join 3 lines (current plus next two):
30. 3J

31. Move your cursor to somewhere in the middle of the newly joined line, and delete
everything past the location of the cursor, by hitting capital D

32. Go to column 1 of the current line, by hitting number 0
33. Go to the end of the current line, by hitting the key $
34. Go to the top of the file, by entering :1
35. Change all occurrences of the word line to stuff
36. :%s/line/stuff/g

37. Turn line numbers on:
38. :set nu

39. Turn them off again:
40. :set nonu

41. Continue experimenting with basic editing commands as you like.
42. Save your changes periodically by entering :w
43. When you are through, save and quit by entering :wq

Editing across files
1. Edit test.file
2. vi test.file

Nouhad J. Rizk Operating system 12/14

3. Turn line numbers on
4. :set nu

5. Save lines 11-20 into a new file called new.file
6. :11,20w new.file

7. From the first edit session, edit new.file, to verify that you correctly saved lines
11-20.

8. :e new.file

9. Return to the first edit session for test.file
10. :e #

11. Now use a named buffer, to transfer lines 1-10 from test.file to new.file. The
buffer can be named a.

First, go to the top of test.file

:1

12. Retrieve 10 lines into named buffer a.
13. "a10yy

14. Edit new.file
15. :e new.file

16. Go to the top of new.file
17. :1

18. Retrieve the contents of buffer a, and place them prior to the top line

Nouhad J. Rizk Operating system 13/14

19. "aP

20. Return to test.file
21. :e #

22. Append lines 10-12 to the end of new.file
23. :10,12w>> new.file

24. Verify that the new lines were appended, by editing the alternate file (new.file)
and going to the bottom.

25. :e #
26. G

27. Save and quit:
28. :wq

Create a vi profile (.exrc)
1. At the UNIX command prompt, make sure you are in your home directory:
2. cd $HOME

3. Create a .exrc file:
4. vi .exrc

5. Go into input mode, by hitting letter i
6. Type the following text:
7. set showmode

8. Optional: If you want line numbers to always be displayed, then hit the return key,
and enter the text set nu.

9. set nu

Nouhad J. Rizk Operating system 14/14

10. Return to command mode by hitting the ESC key
11. Save and quit by entering :wq
12. Now test your profile, by opening test.file:
13. vi test.file

14. Go into input mode, by hitting letter i. You should see INPUT MODE in the
bottom right.

15. Hit the ESC key to return to command mode.
16. Hit capital R (shift-R) to go to replace mode. You should see REPLACE MODE

at the bottom right.
17. Return to command mode, by hitting the ESC key.
18. Save and quit by entering :wq

Log out
If you are finished now, remember to logout at the UNIX command prompt:
logout

	Workshop: Using the vi editor
	References
	Why learn vi?
	Other editors

	Overview of vi
	vi modes
	vi commands
	Getting in and out of vi

	Moving around
	Moving one character at a time
	Scrolling
	Global movements
	Moving within a line
	Moving by words
	Moving by paragraph
	Locating text

	Editing commands
	Adding text
	Deleting text
	Copying text
	Moving text
	Joining and splitting lines
	More ways to add and replace text
	Global replacements
	Repeating and undoing edits

	Edits across files
	Reading and saving into other files
	Editing multiple files
	Using named buffers

	Tailoring vi
	Set commands
	Creating a vi profile

	Summary of most useful commands
	Exercises
	Basic editing
	Editing across files
	Create a vi profile (.exrc)
	Log out

